Cholesterol Management


Here we present a comprehensive article, quite technical but it might be of interest to a few.  Reference ‘Life Extension’,  lef.org .

Nutritional Approaches to Managing Blood Lipids and Lipoproteins

Nutritional approaches to blood lipid and lipoprotein management mirror many of the strategies of conventional therapies. Dietary modifications aim to reduce the intake and uptake of fats and cholesterol from the diet. The inclusion of specific dietary compounds with cholesterol-lowering (hypocholesterolemic) or cardioprotective properties may also reduce cardiovascular disease risk by several different mechanisms.

Diet is an important determinant of cardiovascular disease risk; both conventional and alternative approaches advocate dietary and lifestyle changes as the first step in meeting lipid management goals. The National Cholesterol Education Program (NCEP) developed the Therapeutic Lifestyle Changes (TLC) diet42 for medical professionals to help patients pursue nutritional options for lowering cholesterol. The TLC diet recommends no more than 25 to 35 percent of daily calories from total fat, with up to 20 percent as monounsaturated, 10 percent as polyunsaturated, and less than 7 percent as saturated fats. This relatively high allotment of fat calories allows for increased unsaturated fat intake like omega-3 fatty acids in place of carbohydrates for patients with metabolic syndrome.

Carbohydrates and proteins should provide 50-60 percent and 15 percent, of total calories, respectively. Dietary cholesterol intake should be less than 200 mg per day. Optional dietary guidelines include the addition of 10-25 grams of soluble fiber, and 2 grams of plant sterols per day. Total calories are adjusted to maintain body weight and prevent weight gain, and enough moderate exercise to burn at least 250 calories per day is recommended.

Although not designed as a hypocholesterolemic diet, the DASH (Dietary Approaches to Stop Hypertension) eating plan encourages many of the same heart-healthy eating habits.43 The first DASH eating plan (originally called the “combination diet”) focused on fruits, vegetables, and whole grains, and was especially high in fiber (31 grams/day) and potassium (4.7 grams / day), and low in animal products. Ironically, the original DASH was not a low sodium diet (allowing up to 3 grams/day), but was nonetheless hypotensive44. The low-sodium DASH diet has demonstrated even greater hypotensive effects when limiting sodium to 1.5 grams/day.45 Recall that hypertension is a major coronary heart disease factor. Hypertension magnifies the danger posed by excess LDL by damaging the endothelial barrier, allowing increased permeability.

Caloric restriction (CR) is the dramatic reduction of dietary calories (by up to 40%), to a level short of malnutrition.46 Restriction in energy intake slows down the body’s growth processes, causing it to instead focus on protective repair mechanisms; the overall effect is an improvement in several measures of wellbeing. Observational studies have tracked the effects of CR on lean, healthy individuals, and have demonstrated that moderate CR (22-30% decreases in caloric intake from normal levels) improves heart function, reduces markers of inflammation (C-reactive protein, tumor necrosis factor (TNF)), reduces risk factors for cardiovascular disease (LDL-C, triglycerides, blood pressure) and reduces diabetes risk factors (fasting blood glucose and insulin levels).47,48,49,50 Preliminary results of the Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE) study, a long-term multicenter trial on the effects of calorie-restricted diets in healthy, overweight volunteers51 has shown that moderate CR can reduce several cardiovascular risk factors (LDL-C, triglycerides, and blood pressure, C-reactive protein).52

Replacing Lost Hormones to Achieve Optimal Cholesterol Levels

Due to the role of cholesterol as a precursor to steroid hormones, some researchers have speculated that the elevation in cholesterol seen with advancing age is a compensatory effort by the body to restore levels of hormones to more youthful levels.

In a small clinical trial, Dr. Sergey Dzugan, and Dr. Arnold Smith, found that restoring youthful hormone levels with the use of bioidentical hormone replacement therapy (BHRT) resulted in a significant reduction in cholesterol levels in 20 individuals with high cholesterol.53

Hormone replacement therapy has been shown to reduce cardiovascular risk in aging women,54 and aging men with lower testosterone levels are at significantly greater risk for heart disease.55 Thus, aging individuals should consider optimizing their hormone levels in order to reduce cardiovascular risk. More information on this topic can be found in Life Extension’s Hormone Replacement Therapy protocols for Men and Women.

Nutrients for Lipid Management

There are several nutrients that have been identified as potential agents for promoting a favorable lipid profile; many of them work by the same principles as conventional therapies (such as reducing cholesterol synthesis, or interfering with cholesterol absorption in the gut). Several also have additional activities (antihypertensive, inhibition of LDL-oxidation, antiinflammatory) that complement their cholesterol-lowering activity and lend to their overall reductions in fatal and non-fatal cardiovascular events.

Inhibiting Cholesterol Synthesis

Pantethine and its metabolites appear to act on the body’s fat and cholesterol metabolism pathways. Pantethine is a derivative of pantothenic acid (vitamin B5), and can serve as a source of the vitamin. One notable function of vitamin B5 is its conversion into coenzyme A, a necessary factor in the metabolism of fatty acids into cellular energy. The pantethine derivative cysteamine may also function to reduce the activity of liver enzymes that produce cholesterol and triglycerides.56 Studies of pantethine consumption have demonstrated significant reductions in total- and LDL cholesterol (up to 13.5%), triglycerides, and elevation of HDL-C in hypercholesterolemic subjects (individuals with high cholesterol)57,58 and diabetic subjects59 when taken at 900-1,200mg/day, although significant effects on triglycerides have been observed at dosages as low as 600 mg / day.60

Red yeast rice is a traditional preparation of rice fermented by the yeast Monascus purpureus. The yeast produces metabolites (monacolins) that are naturally-occuring HMG-CoA Reductase inhibitors (one of these, monacolin K, is chemically identical to lovastatin61). A comprehensive review of 93 randomized trials including nearly 10,000 patients has demonstrated that commercial preparations of red yeast rice produced reduction in total cholesterol, LDL-C, triglycerides, and an increase in HDL-cholesterol.62 A long-term (4.5 year) multicenter study of nearly 5,000 patients with a previous heart attack and high total cholesterol levels demonstrated that a commercial red yeast rice preparation reduced the incidence of major coronary events, including nonfatal heart attack and cardiovascular mortality, when compared to placebo63. Red yeast rice extracts have also been shown to be well tolerated and effective in lowering LDL in patients with statin intolerance.64,65

Due to regulations regarding their labeling in the US, standardization of commercial red yeast rice preparations for monacolins is problematic, thus levels of monacolins can vary dramatically between red yeast rice products.66 There are some standardized red yeast rice products that are standardized for monacolin K content.

Garlic has been substantiated by several human trials, particularly its ability to support favorable blood lipid profiles. Three separate analyses of 32 blinded, controlled human trials of garlic consumption in healthy or patients with high cholesterol and trigylcerides confirm significant reductions in total cholesterol by an average of 7.3 mg/dL, and triglycerides by an average of 4.2 mg/dL. 67,68,69 While the average cholesterol reductions across all human studies are modest, greater reductions in total cholesterol were realized in patients who were initially hyperlipidemic or hypertriglycemic (>11 mg/dL reduction), took the extract for over 12 weeks (11 mg/dL reduction), or took a garlic powder (as opposed to an oil or aged extract; 12 mg/dL reduction).70

Garlic also reduces systolic- and diastolic- blood pressure (SBP and DBP) in hypertensive individuals, and systolic blood pressure in persons with normal blood pressure. A recent review and analysis of 11 controlled human trials of garlic showed a mean decrease of 4.6 ± 2.8 mm Hg for SBP in the garlic group compared to placebo, while the mean decrease in the hypertensive subgroup was 8.4 mm Hg for SBP and 7.3 mm Hg for DBP.71

Indian Gooseberry (Amla; Emblica officinalis) has been used traditionally as a nutrient-dense food in Indian regions, and in Ayurvedic medicine for treating a variety of conditions. Modern scientific inquiry has revealed considerable evidence in support of the medicinal use of this nutritional powerhouse. Analytical studies on extracts of Indian Gooseberry highlight its potent antioxidant properties;72 animal studies carry these findings forward by showing that orally administered amla extract significantly reduce levels of oxidized LDL.73,74 In human studies, extracts of amla have been shown to attenuate elevations in LDL, total cholesterol, and triglycerides, and boost levels of protective HDL.75 In a study examining the antioxidant activity of amla extract in subjects with metabolic abnormalities, four months of supplementation was shown to dramatically bolster plasma antioxidant power and suppress oxidative stress.76

Studies suggest that amla extract may also protect against LDL glycation by modulating blood glucose levels. In diabetic patients amla not only significantly reduced post-prandial glucose levels, but also lowered lipid and triglyceride levels over a 21 day period77. In an animal model of metabolic syndrome induced by a high fructose diet, concomitant administration of amla extract reined in rising cholesterol and triglyceride levels, and also significantly repressed the expression of inflammation-related genes, which are typically elevated in metabolic syndrome models.78 Extracts of the antioxidant-rich fruit also reduce levels of advanced glycation end products (AGEs), which are formed by the same process as glycated LDL.79 By limiting the amount of LDL particles that become glycated, amla may help maintain proper cellular uptake of cholesterol and reduce the amount of LDL-C available to infiltrate the arterial wall.

Continue reading here.

About Ken McMurtrie

Retired Electronics Engineer, most recently installing and maintaining medical X-Ray equipment. A mature age "student" of Life and Nature, an advocate of Truth, Justice and Humanity, promoting awareness of the injustices in the world.
This entry was posted in HEALTH, Herbal, medical, natural and tagged , , , , , , , , , , . Bookmark the permalink.

2 Responses to Cholesterol Management

  1. Pingback: Lower Cholesterol Diet

  2. Pingback: Symptoms Of Menopause Onset

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s